Math 4650 - Homework # 1Properties of the real numbers

Part 1 - Computations

- 1. Find the values of x that satisfy the following equations and draw a picture of the solution set.
 - (a) |x-1| < 2
 - (b) $|-2+x| \le 4$
 - (c) 0 < |x 2| < 0.01
 - (d) $0 < |x 5| \le 2$
- 2. Find inf(X) and sup(X) if they exist.

Don't prove anything, just state the answer. Draw a picture.

(a)
$$X = \left\{ 5 + \frac{1}{n} \mid n \in \mathbb{N} \right\}$$

(b)
$$X = \left\{ 1 + \frac{(-1)^n}{n} \mid n \in \mathbb{N} \right\}$$

(c)
$$X = \left\{ \frac{1}{1+x^2} \mid x \in \mathbb{R} \right\}$$

(d)
$$X = \left\{ \frac{x}{1+x} \mid x \in \mathbb{R} \text{ with } x > -1 \right\}$$

(e)
$$X = \left\{ x \in \mathbb{R} \mid x^2 + 1 < 3 \right\}$$

(f)
$$X = \left\{ x \in \mathbb{R} \mid x^3 < 1 \right\}$$

Part 2 - Proofs

- 3. Let $x \ge 0$ be a real number. Suppose that for each $\epsilon > 0$ we have that $x \le \epsilon$. Prove that x = 0.
- 4. Suppose that S is a non-empty subset of the real numbers. Suppose that the supremum of S exists. Prove that it is unique.
- 5. Let S be a non-empty subset of the real numbers. Suppose that b is an upper bound for S and $b \in S$. Prove that b is the supremum of S.

- 6. Suppose that A and B are non-empty subsets of \mathbb{R} that are both bounded from below and above. Further suppose that $A \subseteq B$.
 - (a) Prove that $\inf(B) \le \inf(A) \le \sup(A) \le \sup(B)$.
 - (b) If $\sup(A) = \sup(B)$ and $\inf(A) = \inf(B)$ must it be that A = B? If so, prove it. If not, give a counterexample.
- 7. Let A and B be non-empty subsets of \mathbb{R} . Suppose that the supremum of A and supremum of B exist.
 - (a) <u>Prove:</u> If $A \cap B$ is non-empty then $\sup(A \cap B) \le \min\{\sup(A), \sup(B)\}$
 - (b) Disprove: If $A \cap B$ is non-empty then $\sup(A \cap B) = \min\{\sup(A), \sup(B)\}$
 - (c) <u>Prove:</u> $\sup(A \cup B) = \max\{\sup(A), \sup(B)\}$
- 8. Let a, b, x, and y be real numbers. Prove:

(a)
$$|a - b| = |b - a|$$

(b) $|ab| = |a| |b|$
(c) $\left|\frac{a}{b}\right| = \frac{|a|}{|b|}$ if $b \neq 0$
(d) If $a < x < b$ and $a < y < b$, then $|x - y| < b - a$
(e) $||a| - |b|| \le |a - b|$